Encyclopedia Astronautica
Nitric acid/Gasoline


Drawing on the German World War II Wasserfall rocket, nitric acid (HNO3) became the early storable oxidiser of choice for missiles and upper stages of the 1950's. To overcome various problems with its use, it was necessary to combine the nitric acid with N2O4 and passivation compounds. These formulae were considered extremely secret at the time. By the late 1950's it was apparent that N2O4 by itself was a better oxidiser. Therefore nitric acid was almost entirely replaced by pure N2O4 in storable liquid fuel rocket engines developed after 1960. Gasoline of various grades were used as fuel in the earliest rocket engines of Goddard and others. Once appropriate blends of kerosene were developed in the United States and Soviet Union, that became the hydrocarbon fuel of choice.

The propellant combinations WFNA/ JP-4 and later IRFNA/JP-4 were the first storable systems given serious consideration in the United States. Problems which caused the abandoning of these propellants were the absence of reliable hypergolic ignition and unstable combustion. IRFNA/UDMH and IRFNA/JP-X finally did prove satisfactory.

The composition of propellant-grade nitric acids is covered by Military Specification MIL-N-7254. The nitric acids are fuming liquids which vary from colorless to brown, depending on the amount of dissolved N2O4. The vapours from these acids have a characteristic pungent odour. They are highly corrosive, toxic, oxidising agents and attack most metals. They react with most organic materials violently enough to cause fire. The acids are soluble in water in all proportions, with an accompanying evolution of heat. They cannot be made to explode. Approximately 90 per cent of the nitric acid is made by the catalytic oxidation of ammonia with air or oxygen to yield nitric oxide (NO). The latter is oxidised to N2O4 which, when treated with water, yields nitric acid (HNO3) and may be concentrated by distillation with sulphuric acid. Red fuming nitric acids may be produced by passing gaseous N2O4 into nitric acid, a slight modification of the above process. Production of nitric acid was estimated at 3 million tonnes in 1959. The price of RFNA was $ 0.20 per kg in drum lots; IRFNA was slightly higher. The varieties of nitric acid propellants include:

  • WFNA - White fuming nitric acid is based on anhydrous nitric acid (HNO3), a colourless corrosive liquid which fumes in moist air. They contain a maximum of 2 per cent water and 0.5 per cent nitrogen dioxide, and decompose to yield amounts of water, nitrogen dioxide, and oxygen which are in chemical equilibrium.

  • IWFNA - Inhibited white fuming nitric acid. Since container materials are attacked by WFNA and equilibrium products, 0.6 per cent HF is added for passivation by deposition of a protective metallic fluoride coating.

  • RFNA - Red fuming nitric acid. Since WFNA or IWFNA exhibit excessive equilibrium decomposition pressures, reaching 75 bar at 700 deg C. To suppress the high pressure through a mass-action effect, some 13 per cent N2O4 and 3 per cent H20 are added, in order to reduce equilibrium pressures to 2 bar at 700 deg C. The colour of the resulting red fuming nitric acid is imparted by N204.

  • IRFNA - Inhibited red fuming nitric acid. Addition of 0.6 per cent HF to RFNA produces inhibited RFNA (IRFNA). The IRFNA specification was published in 1954 and thereafter Russian rocket engines using the same fuel appeared.

  • AK20 - Russian formulation consisting of 80% nitric acid + 20% N2O4 (AK = Azotna Kislota = Nitric Acid)

  • AK20F - Russian formulation consisting of 80% nitric acid + 20% N2O4 + fluorine passivant

  • AK20I - Russian formulation consisting of 80% nitric acid + 20% N2O4 + iodine passivant

  • AK20K - Russian formulation consisting of 80% nitric acid + 20% N2O4 + unknown additive

  • AK27I - Russian formulation consisting of 73% nitric acid + 27% N2O4 + iodine passivant

  • AK-27P - Russian formulation consisting of 73% nitric acid + 27% N2O4 + unknown additive

Oxidizer: Nitric acid. Fuel: Gasoline. Oxidizer Density: 1.510 g/cc. Oxidizer Freezing Point: -42 deg C. Oxidizer Boiling Point: 86 deg C. Fuel Density: 0.710 g/cc. Fuel Freezing Point: -58 deg C. Fuel Boiling Point: 110 deg C.

More... - Chronology...


Associated Engines
  • XLR20AJ-2 Aerojet Nitric acid/Gasoline rocket engine. Lark. Launch thrust 6.66 kN. Development begun January 1946. Blast turbine, three levels of thrust (600/1000/7500 lbf). Replaced NM Lark. More...
  • XLR24AJ-2 Aerojet Nitric acid/Gasoline rocket engine. Lark. Launch thrust 10.7 kN. Development begun January 1946. Blast turbine, 2500 Ibf fixed thrust (both were part of overall R&D contract) More...

Home - Browse - Contact
© / Conditions for Use