Encyclopedia Astronautica
Shenzhou OM

Shenzou OM Dimensioned Drawing
Chinese manned spacecraft module. Operational, first launch 1999.11.19. The orbital module provided quarters for the crew during the space mission, and could be fitted out with different internal and external equipment according to mission requirements.

The orbital module was jettisoned before retrofire and was equipped with its own solar panels and propulsion for autonomous flight after separation. At a later phase of the project the module could be left in space as a docking target, man-tended laboratory or attached to the planned 20-metric ton space station. For such missions it would have a Russian-style androgynous docking system at the forward end of the orbital module in place of the equipment pallet.

The module was a semi-monocoque aluminum structure, cylindrical, 2.250-m in diameter and 2.800 m long. This length did not include an equipment pallet mounted on the forward end, which varied from flight to flight. A large 80-cm-diameter EVA hatch was located in the lower portion of the module, with a 48-cm diameter porthole above that, very unlike Soyuz. A rectangular equipment package was mounted on the opposite side of the orbital module. Also on that side was a second smaller window. The lateral sides of the module were used for mounting of the rotating solar panels. At the base of the orbital module was a 70-cm-diameter hatch providing access to the re-entry vehicle. Presumable a similar hatch would be located at the nose for docking missions.

The equipment pallet varied from mission to mission. Shenzhou 1 and 2 flew with dummy or partial electronic intelligence packages, a complex arrangement of equipment mounted at the top of the orbital module. This included a semi-circular ring which provided mounting for rectangular instruments around its exterior. Three perpendicular 0.4 m extendible booms were deployed as well, part of an experimental magnetic attitude sensing and control system. Shenzhou 3 and 4 flew with the complete electronic intelligence payload mounted on the nose. As analyzed by veteran space-radio expert Sven Grahn, this consisted of two major components. UHF emission direction-finding was accomplished by three earth-pointing television-aerial type antennae deployed on long telescoping booms. These would function in the UHF band between 300 and 1,000 MHz, covering a variety of civilian and military emission sources. They were supplemented by seven horn antennae arranged in an arc. These would detect and localize radar transmissions. This combination would allow coverage of the entire earth below as the orbital module passed over the earth's surface.

Given that China had not previously flown a major ELINT satellite, this was an enormous leap in Chinese military surveillance from space. Each orbital module remained in space as long as eight months after the other modules return to earth. That means the orbital modules of the Shenzhou spacecraft have been scanning the earth 90% of the time, day in and day out, since Shenzhou 3 was launched in March 2002. Data was dumped in ten-minute bursts when the spacecraft pass over Miyun, near Beijing. These missions would have given China's equivalent to the American National Security Agency an excellent introduction into capabilities and problems in flying an operational ELINT satellite over a variety of targets and seasons of the year. The main objective, as was the case for low-altitude Soviet systems, would be to keep track of the US Navy, particularly carrier groups. Observations by Shenzhou 4 during the Iraq War would have been an intelligence windfall for the Chinese.

Shenzhou 5's equipment included an imaging reconnaissance package. This consisted of two cameras with an aperture of 500 - 600 mm. The close-look camera was mounted in the equipment pallet at the nose of the spacecraft in a rectangular housing, 0.900 m x 1.268 m x 0.86 m. Zhang Houying of the Chinese Academy of Sciences gave the ground resolution of this close-look CCD camera as 1.6 m. The other camera was mounted in the porthole above the orbital module's main hatch. The use of two differing cameras indicated a hyper-spectral, multi-resolution, combination mapping/close-look system.

Drawings also appeared of a curious Shenzhou configuration with 'jaws' at the forward end of the orbital module, perhaps some kind of satellite capture mechanism.

A Central Terminal Unit in the orbital module was a dual-redundant computer that controlled the spacecraft during autonomous flight. It would also automatically come on line if the primary system in the re-entry vehicle failed during manned operations. The orbital module's autonomous on-orbit tracking and control subsystem consisted of S-band transponders, telemetry equipment and antennae. Thermal control of the module was via external louvers. Orbital module power was provided by two solar panels, each in two section, with a total area of 12.24 square meters. These charged nickel-cadmium batteries within the module for power when in the earth's shadow.

Four groups of four 5-N thrusters were mounted at the base of the orbital module. These provided an autonomous attitude control and maneuvering capability to the orbital module when in free flight. They also presumably could serve as a backup to the main orientation system in an emergency. The system used hydrazine monopropellant, pressure-fed at 23 Mpa from a 7-litre titanium cold gas tank. The thrusters were plumbed into redundant groups.

Many, many thanks to Chen Lan for providing original Chinese-language source material for this project, and to WXJ for the translation.


Habitable Volume: 8.00 m3. RCS Coarse No x Thrust: 16 x 5 N. Electric System: 1.20 kWh. Electric System: 0.50 average kW.

Gross mass: 1,500 kg (3,300 lb).
Height: 2.80 m (9.10 ft).
Diameter: 2.25 m (7.38 ft).
Span: 10.40 m (34.10 ft).
First Launch: 2003.10.15.
Number: 1 .

More... - Chronology...

Associated Countries
Associated Spacecraft
  • Shenzhou Chinese manned spacecraft. Operational, first launch 1999.11.19. The Chinese Shenzhou manned spacecraft resembled the Russian Soyuz spacecraft, but was of larger size and all-new construction. More...

See also
  • CZ China's first ICBM, the DF-5, first flew in 1971. It was a two-stage storable-propellant rocket in the same class as the American Titan, the Russian R-36, or the European Ariane. The DF-5 spawned a long series of Long March ("Chang Zheng") CZ-2, CZ-3, and CZ-4 launch vehicles. These used cryogenic engines for upper stages and liquid-propellant strap-on motors to create a family of 12 Long-March rocket configurations capable of placing up to 9,200 kg into orbit. In 2000 China began development of a new generation of expendable launch vehicles using non-toxic, high-performance propellants with supposedly lower operating costs. However these encountered development delays, and it seemed the reliable Long March series of rockets would continue in operational use for nearly fifty years before being replaced. More...

Associated Launch Vehicles
  • CZ-2F Chinese orbital launch vehicle. Man-rated version of CZ-2E, designed for launch of the Shenzhou spacecraft. Little difference externally. Modifications were related to improved redundancy of systems, strengthened upper stage to handle large 921-1 spacecraft fairing and launch escape tower. President Jiang Zemin gave the name 'Shenjian' ('Divine Arrow') to the CZ-2F after the successful launch of the Shenzhou-3 mission. More...

Associated Manufacturers and Agencies
  • CAST Chinese manufacturer of spacecraft. China Academy of Space Technology, Beijing, China. More...
  • CASC Chinese manufacturer of spacecraft. China Aerospace Corporation, China. More...

Associated Propellants
  • Hydrazine Hydrazine (N2H4) found early use as a fuel, but it was quickly replaced by UDMH. It is still used as a monopropellant for satellite station-keeping motors. Hydrazine (N2H4) found early use as a fuel, but it was quickly replaced by UDMH. It is still used as a monopropellant for satellite station-keeping motors. More...

  • Chen Lan, Dragon in Space, Web Address when accessed: here.
  • Mansfield, Simon, editor, Space Daily, The best source for space news on the web.. Web Address when accessed: here.
  • Chen Lan, Personal communication..

Associated Launch Sites
  • Jiuquan China's first launch center, also known as Shuang Cheng Tzu. Jiuquan Satellite Launch Centre, situated at 100 degrees East, 41 degrees North, is located in the Jiuquan Region, Gansu province, north-western China. It was China's first ballistic missile and satellite launch centre. More...
  • Jiuquan SLS CZ launch complex. New launch complex for the CZ-2F manned spacecraft launcher. Vehicle processed at nearby Vertical Assembly Facility. More...

Shenzhou OM Chronology

2003 October 15 - . 01:00 GMT - . Launch Site: Jiuquan. Launch Complex: Jiuquan SLS. LV Family: CZ. Launch Vehicle: CZ-2F.
  • Shenzhou 5 Orbital Module - . Mass: 1,100 kg (2,400 lb). Nation: China. Agency: SISE. Class: Surveillance. Type: Military surveillance satellite. Spacecraft: Shenzhou OM. Decay Date: 2004-05-30 . USAF Sat Cat: 28049 . COSPAR: 2003-045G. Apogee: 347 km (215 mi). Perigee: 338 km (210 mi). Inclination: 42.4000 deg. Period: 91.40 min. The Shenzhou 5 orbital module was essential an unmanned military reconnaisance satellite. It was never entered by the astronaut during the mission, and was equipped with two high resolution (1.6 m) surveillance cameras. It was expected to operate until at least spring 2004.

Home - Browse - Contact
© / Conditions for Use