Encyclopedia Astronautica
RD-0212



rd0212.jpg
RD-0212
CADB Museum, March 1992.
Credit: © Dietrich Haeseler
wrd0212.jpg
RD-0212
Credit: KBKhA
Kosberg N2O4/UDMH rocket engine. 613 kN. Proton stage 3. Engine unit consisting of 1 RD-0213 maine engine and 4 RD-0214 vernier/steering engines. 8D48 essentially similar to 8D411 and 8D412 and has the same combustion chamber. Isp=324s. First flight 1967.

Application: Proton stage 3.

Chambers: 1 + 4.

AKA: RD-473; RD-0212; 8D49.
Thrust: 613.00 kN (137,807 lbf).
Specific impulse: 325 s.
Burn time: 230 s.
First Launch: 1962-68.
Number: 306 .

More... - Chronology...


Associated Countries
See also
Associated Launch Vehicles
  • Monoblock UR-500 Russian orbital launch vehicle. During UR-500 design studies, two variants of the first stage were considered: polyblock and monoblock. The monoblock approach was that the first stage be assembled from two separate modules with the same diameter: an upper oxidiser module and a lower fuel and engine block. In assembly trials of this design it proved difficult, because of the height of the first stage, to obtain access to the upper stages and payload atop the rocket. Although there was a payload advantage compared to the more compact polyblock design, this was relatively small and outweighed by the operational difficulties. More...
  • Polyblock UR-500 Russian orbital launch vehicle. UR-500 design studies considered two variants of the first stage: polyblock and monoblock. The polyblock variant consisted of a centre large diameter oxidizer tank surrounded by several smaller diameter fuel tanks. This version could be assembled in a special rig with the lateral blocks being sequentially mounted on the centre. In January 1962 this design was chosen as most advantageous, following studies that indicated improved wind loads and bending moment characteristics compared to the monoblock design. The developed version of the design would become known as the Proton. More...
  • Proton-K/D Russian orbital launch vehicle. This four stage version of the Proton was originally designed to send manned circumlunar spacecraft into translunar trajectory. Guidance to the Block D stage must be supplied by spacecraft. The design was proposed on 8 September 1965 by Korolev as an alternate to Chelomei's LK-1 circumlunar mission. It combined the Proton 8K82K booster for the LK-1 with the N1 lunar Block D stage to boost a stripped-down Soyuz 7K-L1 spacecraft around the moon. The Korolev design was selected, and first flight came on 10 March 1967. The crash lunar program led to a poor launch record. Following a protracted ten year test period, the booster finally reached a level of launch reliability comparable to that of other world launch vehicles. More...
  • Proton-K Russian orbital launch vehicle. Development of a three-stage version of the UR-500 was authorised in the decree of 3 August 1964. Decrees of 12 October and 11 November 1964 authorised development of the Almaz manned military space station and the manned circumlunar spacecraft LK-1 as payloads for the UR-500K. Remarkably, due to continuing failures, the 8K82K did not satisfactorily complete its state trials until its 61st launch (Salyut 6 / serial number 29501 / 29 September 1977). Thereafter it reached a level of launch reliability comparable to that of other world launch vehicles. More...
  • Proton-K/DM Russian orbital launch vehicle. The original four stage Proton / Block D configuration was used until 1976, at which time it was replaced by a modernised version equipped with N2O4/UDMH verniers for precise placement of payloads in geosynchronous orbit and its own self-contained guidance unit. This was accepted into military service in 1978 with the first Raduga launch. The stage was first developed for launch of gesynchronous military communications and early warning satellites (Raduga, Ekran, Gorizont, Potok, SPRN). Its later versions continue in use for launch of MEO and geosynchronous comsats, and was Russia's most successful commercial launcher. More...
  • Proton-K/D-1 Russian orbital launch vehicle. This derivative of the original four stage Block D / 11S824 version of the Proton was used from 1978 to launch Lavochkin OKB planetary probes (Mars, Venera) and high earth orbit astronomical observatories (Astron, Granat). Guidance to the Block D-1 stage must be supplied by spacecraft. Equipped with N2O4/UDMH verniers for precise placement of payloads in high orbits or planetary trajectories. More...
  • Proton-K/DM-2 Russian orbital launch vehicle. This improved four stage version uses the Block DM-2 / 11S861 fourth stage, which has its own guidance unit. This reduces payload but does not require the spacecraft's guidance system to provide steering commands to booster. Replaced the original Block DM / 11S86 version from 1982 to 1995. Used for launch of Glonass navigation satellites into medium earth orbit; and launch of Luch, Ekran-M, Potok, Raduga, Gorizont, Raduga-1, Elektro, and Gals communications satellites into geosynchronous orbit. Commercial version with Saab payload adapter-seperation system for Western payloads was dubbed 'Block DM1'. More...
  • Proton-K/DM-2 DM1 Russian orbital launch vehicle. Version of the 11S861 with adapter for Lockheed Martin AS 4000 bus spacecraft. More...
  • Proton-K/D-2 Russian orbital launch vehicle. This four stage version of the Proton was a modification of the original Block D / 11S824M for launch of late 1980's Lavochkin OKB probes on missions to Mars. Guidance to the Block D-2 stage must be supplied by spacecraft. More...
  • Proton-K/DM-2M This four stage version uses the Block DM-2M / 11S861-01 upper stage, which has its own self-contained guidance unit. This reduces payload but does not require the spacecraft's guidance system to provide steering commands to booster. Used for launches of Russian geosynchronous satellites from 1994 on. More...
  • Proton-K/17S40 Russian orbital launch vehicle. Version of Proton using Block DM-5 / 17S40 fourth stage. This stage has a new payload adapter for use with heavier paylods launched into sub-synchronous orbits. Used for launch of Arkon reconnaisance satellite. More...
  • Proton-K/17S40 DM2 Russian orbital launch vehicle. Version of the 17S40 with payload adapter for deployment of multiple LM 700 (Iridium) spacecraft into medium earth orbit. More...

Associated Manufacturers and Agencies
  • Kosberg Russian manufacturer of rocket engines. Kosberg Design Bureau, Russia. More...

Associated Propellants
  • N2O4/UDMH Nitrogen tetroxide became the storable liquid propellant of choice from the late 1950's. Unsymmetrical Dimethylhydrazine ((CH3)2NNH2) became the storable liquid fuel of choice by the mid-1950's. Development of UDMH in the Soviet Union began in 1949. It is used in virtually all storable liquid rocket engines except for some orbital manoeuvring engines in the United States, where MMH has been preferred due to a slightly higher density and performance. More...

Bibliography
  • Haeseler, Dietrich, Visit to the museum of Chemical Automatics Design Bureau, Voronezh 1992 via Dietrich Haeseler.

Associated Stages
  • Proton K-3 N2O4/UDMH propellant rocket stage. Loaded/empty mass 50,747/4,185 kg. Thrust 630.17 kN. Vacuum specific impulse 325 seconds. More...
  • Proton KM-3 N2O4/UDMH propellant rocket stage. Loaded/empty mass 50,300/3,700 kg. Thrust 613.80 kN. Vacuum specific impulse 326.5 seconds. More...
  • UR-500 Stage 3 N2O4/UDMH propellant rocket stage. Loaded/empty mass 23,940/2,180 kg. Thrust 613.11 kN. Vacuum specific impulse 320 seconds. Original Proton third stage design. More...

Home - Browse - Contact
© / Conditions for Use