Encyclopedia Astronautica
RLA-1200


Glushko Lox/Kerosene rocket engine. 12,700 kN. Design 1974. Proposed engines for the RLA series launch vehicles. This version would use four chambers. 'Down-sized' to 200 tonnes thrust for Energia.

In 1972 to 1974 Glushko proposed lox/kerosene engines for the RLA series launch vehicles and the UR-700M Mars booster with a lift-off thrust of 300 tonnes per chamber. The RLA version would use four chambers for a total thrust of 1200 tonnes. Following rejection of the RLA and the adoption of the Energia design, this chamber design was 'down-sized' to 200 tonnes thrust for Energia.

Chambers: 4.

Status: Design 1974.
Thrust: 12,700.00 kN (2,855,000 lbf).
First Launch: 1972-1975.

More... - Chronology...


Associated Countries
See also
Associated Launch Vehicles
  • RLA-120 Russian heavy-lift orbital launch vehicle. Medium booster concept with a payload to low earth orbit of 30 metric tons using the RLA-120 core and a 150 metric ton upper stage. Glushko proposed that the RLA-120 would boost reconnaissance satellites and modules of his POS Permanent Orbital Station into a sun synchronous orbit beginning in 1979. The government rejected the RLA concept, but this design led directly to the successful Zenit-2 booster. More...
  • RLA-150 Russian heavy-lift orbital launch vehicle. Super-booster concept with a payload to low earth orbit of 250 metric tons using six modules as the first stage and the RLA-120 core. Glushko proposed that the booster could launch a Soviet manned Mars landing by 1983. The government rejected the RLA concept, but it did lead to the Energia booster of the 1980's. More...
  • RLA-135 Russian heavy-lift orbital launch vehicle. Heavyweight booster concept with a payload to low earth orbit of 100 metric tons using two modules as the first stage and the RLA-120 core. Glushko proposed that the booster could launch a Soviet manned lunar landing by 1981. The government rejected the RLA concept, but it did lead to the Zenit-2 and Energia boosters of the 1980's. More...

Associated Manufacturers and Agencies
  • Glushko Russian manufacturer of rocket engines and rockets. Glushko Design Bureau, Russia. More...

Associated Propellants
  • Lox/Kerosene Liquid oxygen was the earliest, cheapest, safest, and eventually the preferred oxidiser for large space launchers. Its main drawback is that it is moderately cryogenic, and therefore not suitable for military uses where storage of the fuelled missile and quick launch are required. In January 1953 Rocketdyne commenced the REAP program to develop a number of improvements to the engines being developed for the Navaho and Atlas missiles. Among these was development of a special grade of kerosene suitable for rocket engines. Prior to that any number of rocket propellants derived from petroleum had been used. Goddard had begun with gasoline, and there were experimental engines powered by kerosene, diesel oil, paint thinner, or jet fuel kerosene JP-4 or JP-5. The wide variance in physical properties among fuels of the same class led to the identification of narrow-range petroleum fractions, embodied in 1954 in the standard US kerosene rocket fuel RP-1, covered by Military Specification MIL-R-25576. In Russia, similar specifications were developed for kerosene under the specifications T-1 and RG-1. The Russians also developed a compound of unknown formulation in the 1980's known as 'Sintin', or synthetic kerosene. More...

Bibliography
  • Chertok, Boris Yevseyevich, Raketi i lyudi, Mashinostroenie, Moscow, 1994-1999.. Web Address when accessed: here.

Associated Stages
  • RLA-1 Lox/Kerosene propellant rocket stage. Loaded/empty mass 800,000/45,000 kg. Thrust 11,700.00 kN. Vacuum specific impulse 337 seconds. Empty mass, specific impulses, length estimated by comparison to smaller Zenit successor design. More...

Home - Browse - Contact
© / Conditions for Use