Encyclopedia Astronautica
Von Braun


American manufacturer of rockets and spacecraft. Von Braun, USA.

More... - Chronology...


Associated Countries
Associated Spacecraft
  • Von Braun Rocketplane German manned rocketplane. Study 1939. On 6 July 1939 Wernher von Braun proposed to the German Reich Air Ministry a "fighter with rocket drive". More...
  • A9 German manned rocketplane. Study 1944. Manned, winged boost-glide version of the V-2 missile. It would have been capable of delivering express cargo 600 km from the launch point within 17 minutes. More...
  • Von Braun Station American manned space station. Study 1945. In the first 1946 summary of his work during World War II, Wernher von Braun prophesied the construction of space stations in orbit. More...
  • Von Braun Passenger Ship American manned Mars orbiter. Study 1952. The first design for a manned Mars orbiter based on engineering analysis. 10 passengers would be housed in a 20-m-diameter sphere during the 963 day mission to Mars, in Mars orbit, and back to earth. More...
  • Von Braun Lunar Lander American manned lunar lander. Study 1952. Von Braun's first lunar lander design was an immense spacecraft, larger in earth orbit than a Saturn V booster. More...
  • Von Braun Landing Boat American manned Mars lander. Study 1952. The first design for a manned Mars lander based on engineering analysis. The enormous glider would have a wingspan of 153 m, and land on Mars horizontally either on skis, skids, or wheels on a prepared runway. More...
  • 1956 Von Braun Passenger Ship American manned Mars orbiter. Study 1956. The 1956 version of Von Braun's Mars design was slashed by 50% in mass, while the number of passengers was increased from 10 to 12. More...
  • 1956 Von Braun Cargo Ship American manned Mars orbiter. Study 1956. Using the same basic systems as the Passenger Ship, the Cargo Ship would substitute a 177 metric ton Landing Boat for the surface expedition in place of the Passenger Sphere and propellant for the return home. More...
  • 1956 Von Braun Landing Boat American manned Mars lander. Study 1956. The 1956 modification of Von Braun's Landing Boat design was reduced in mass by 12%, and the wingspan by 10%. More...
  • Von Braun Mars Expedition - 1956 American manned Mars expedition. Study 1956. Von Braun's Mars expedition presented in the 1956 book he co-authored with Willy Ley, The Exploration of Mars, was vastly reduced in scope from the 1952 version. More...
  • Adam American manned spacecraft. Study 1957. In early 1958 Wernher von Braun proposed launching an American aboard an Army Redstone on a suborbital mission into space before the end of 1959 at a cost of under $12 million. More...
  • Horizon Lunar Outpost American manned lunar base. Study 1959. In 1959 the US Army completed a plan for a manned military outpost on the moon. More...
  • Horizon Space Suit American pressure suit, study of 1959. For sustained operation on the lunar surface Project Horizon advocated a 'body conformation suit' having a substantial outer metal surface. More...
  • Horizon LERV American manned lunar lander. Study 1959. Lunar landing and return vehicle planned to take up to 16 crew to the lunar surface and back in the US Army's Project Horizon of 1959. More...
  • Saturn II Stage Wet Workshop American manned space station. Study 1964. Wernher von Braun made a rough sketch of a space station based on fitting out of an expended Saturn II stage in orbit on 24 November 1964. More...
  • Von Braun Mars Expedition - 1969 American manned Mars expedition. Study 1969. Von Braun's final vision for a manned expedition to Mars was a robust plan that eliminated much of the risk of other scenarios. Two ships would fly in convoy from earth orbit to Mars and back. More...

See also
Associated Launch Vehicles
  • A1 German test vehicle. First in series of rockets leading to V-2. Exploded at Kummersdorf during a test run. Considered aerodynamically unstable (a stabilising flywheel was mounted forward) and no launch attempts were made. More...
  • A2 German test vehicle. First flight test rocket in the series that led to the V-2. Two were built, dubbed Max and Moritz. Both were successfully flown. More...
  • A3 German test vehicle. The A3 was the first large rocket attempted by Wernher von Braun's rocket team. It was equipped with an ambitious guidance package consisting of three gyroscopes and two integrating accelerometers. The rocket was intended as a subscale prototype for the propulsion and control system technology planned for the much larger A4. All of the launches were failures, and a total redesign, the A5, was developed. More...
  • A5 German test vehicle. Subscale test model of A4 (V-2). Replaced the A3 in this role after its unsuccessful test series. The A5 used the same powerplant as the A3, but had the aerodynamic form of the A4 and a new control system. 25 all-up versions were flown, some several times. More...
  • A9/A10 German intercontinental boost-glide missile. The A9/A10 was the world's first practical design for a transatlantic ballistic missile. Design of the two stage missile began in 1940 and first flight would have been in 1946. Work on the A9/A10 was prohibited after 1943 when all efforts were to be spent on perfection and production of the A4 as a weapon-in-being. Von Braun managed to continue some development and flight tests of the A9 under the cover name of A4b (i.e. a modification of the A4, and therefore a production-related project). In late 1944 work on the A9/A10 resumed under the code name Projekt Amerika, but no significant hardware development was possible after the last test of the A4b in January 1945. More...
  • A7 German test vehicle. Subscale test model of the A9 rocket. Considered for use as a weapon as well. More...
  • A8 German cruise missile. Planned stretched version of the V-2 with storable propellants. Never reached the hardware stage, but design continued after the war in France as the 'Super V-2'. More...
  • A9/A10/A11 German winged orbital launch vehicle. The A11 was planned at Peenemuende to use the A9/A10 transoceanic missile atop the tubby A11 stage to form the basis for launching the first earth satellite - or as an ICBM.... More...
  • A9/A10/A11/A12 German orbital launch vehicle. The A12 has been named as the designation for a true orbital launch vehicle, as sketched out at Peenemuende. It would have been a four-stage vehicle consisting of the A9+A10+A11+A12 stages. Caluclation suggest it could have placed 10 tonnes into low earth orbit. More...
  • A6 German intermediate range cruise missile. The A6 designation was applied to a version of the A5 subscale V-2 using alternate propellants. It also seems to have been applied to a manned, ramjet-powered version of the A9 winged V-2. More...
  • A4b German intermediate range boost-glide missile. Winged boost-glide version of the V-2 missile. The A4b designation was used to disguise work on the prohibited A9 program. More...
  • Von Braun 1948 German winged orbital launch vehicle. Von Braun's 1948 design for a reusable space launcher was remarkable in its tubby design. This was partly driven by the need for large parachute cannisters in the base of the first and second stages, which took up one half of the diameter, with the engines arranged around the periphery. More...
  • Von Braun 1952 German winged orbital launch vehicle. Von Braun's 1952 design for a reusable space launcher used the same mass and performance calculations done in 1948. However the large parachute cannisters were replaced by deployable drag skirts. This allowed the design to be substantially less squat and more elegant than the 1948 version -- but still fatter than the sleek paintings that appeared in print! More...
  • Von Braun 1956 German winged orbital launch vehicle. In 1956, for the book Exploration of Mars and the Disney television series, the 1952 design was significantly 'down-sized'. The first and second stages were simply reduced to 20% of their former size. A tiny expendable third stage replaced the manned glider. The manned glider itself became a seperate payload, that could be replaced by an 'all cargo' module. More...
  • Redstone Redstone was the first large liquid rocket developed in the US using German V-2 technology. Originally designated Hermes C. Redstones later launched the first US satellite and the first American astronaut into space. More...
  • Jupiter A American orbital launch vehicle. The Jupiter A was a modified Redstone missile fitted with Jupiter inertial navigation and control system elements. It also tested Hydyne fuel and other engine modifications for the Jupiter C re-entry vehicle test booster. More...
  • Jupiter C American orbital launch vehicle. Re-entry vehicle test booster and satellite launcher derived from Redstone missile. The Jupiter A version of the Redstone missile was modified with upper stages to test Jupiter re-entry vehicle configurations. Von Braun's team was ordered to ballast the upper stage with sand to prevent any 'inadvertent' artificial satellites from stealing thunder from the official Vanguard program. Korolev's R-7 orbited the first earth satellite instead. The Jupiter C was retroactively named the 'Juno I' by Von Braun's team. More...
  • Jupiter C Juno I American short range ballistic missile. Four stage orbital launch version consisting of 1 x Redstone + 1 x Cluster stage 2 + 1 x Cluster stage 3 + 1 x RTV Motor. The fourth stage allowed the Explorer payload to be placed into orbit. More...
  • Jupiter American intermediate range ballistic missile. The Jupiter IRBM was developed for the US Army. By the time development was complete, the mission and the missile was assigned to the US Air Force, which had its own nearly identical missile, the Thor. Jupiters were stationed in Turkey and Italy in the early 1960's, but withdrawn in secret exchange for the withdrawal of Soviet R-5 missiles from Cuba. The Jupiter was used as the first stage of the relatively unsuccessful Juno II launch vehicle, and proposed for the Juno III and Juno IV. Jupiter tooling and engines were used to build the much larger Juno V / Saturn I launch vehicle. More...
  • Super-Jupiter American orbital launch vehicle. The very first design that would lead to Saturn. A 1.5 million pound thrust booster using four E-1 engines - initial consideration of using a single USAF F-1 engine abandoned because of development time. Existing missile tankage was clustered above the engines. More...
  • Juno II American orbital launch vehicle. Satellite launcher derived from Jupiter IRBM. Basic 4 stage vehicle consisted of 1 x Jupiter + 1 x Cluster stage 2 + 1 x Cluster stage 3 + 1 x RTV Motor More...
  • Juno II (3) American intermediate range ballistic missile. Three stage version consisting of 1 x Jupiter + 1 x Cluster stage 2 + 1 x Cluster stage 3 More...
  • Juno V-A American orbital launch vehicle. By 1958 the Super-Jupiter was called Juno V and the 4 E-1 engines were abandoned in favor of clustering 8 Jupiter IRBM engines below existing Redstone/Jupiter tankage. The A version had a Titan I ICBM as the upper stages. Masses, payload estimated. More...
  • Juno V-B American orbital launch vehicle. A proposed version of the Juno V for lunar and planetary missions used a Titan I ICBM first stage and a Centaur high-energy third stage atop the basic Juno V cluster. Masses, payload estimated. More...
  • Saturn A-1 American orbital launch vehicle. Projected first version of Saturn I, to be used if necessary before S-IV liquid hydrogen second stage became available. Titan 1 first stage used as second stage, Centaur third stage. Masses, payload estimated. More...
  • Saturn C-2 American orbital launch vehicle. The launch vehicle initially considered for realizing the Apollo lunar landing at the earliest possible date. 15 launches and rendezvous required to assemble direct landing spacecraft in earth orbit. More...
  • Jupiter Mercury American intermediate range ballistic missile. Version of Jupiter IRBM designed for launch of Mercury manned capsules on long suborbital flights. Cancelled early in the programme, with the decision being to proceed from Mercury Redstone suborbital flights directly to Mercury Atlas orbital missions. More...
  • Saturn B-1 American orbital launch vehicle. Most powerful version of Saturn I considered. New low energy second stage with four H-1 engines, S-IV third stage, Centaur fourth stage. Masses, payload estimated. More...
  • Saturn A-2 American orbital launch vehicle. More powerful version of Saturn I with low energy second stage consisting of cluster of four IRBM motors and tankage, Centaur third stage. Masses, payload estimated. More...
  • Redstone MRLV American suborbital launch vehicle. Greatly modified Redstone rocket used to launch the Mercury manned spacecraft on a suborbital trajectory, typically 380 km downrange, 220 km altitude, and a speed of 6800 kph. More...
  • Saturn C-4 American orbital launch vehicle. The launch vehicle actually planned for the Lunar Orbit Rendezvous approach to lunar landing. The Saturn C-5 was selected instead to have reserve capacity. More...
  • Saturn I RIFT American nuclear orbital launch vehicle. In the first half of the 1960's it was planned to make suborbital tests of nuclear propulsion for upper stages using a Saturn IB first stage to boost a Rover-reactor powered second stage on a suborbital trajectory. The second stage would impact the Atlantic Ocean down range from Cape Canaveral. More...
  • Saturn C-3 The launch vehicle concept considered for a time as the leading contender for the Earth Orbit Rendezvous approach to an American lunar landing. More...
  • Saturn I American orbital launch vehicle. Von Braun launch vehicle known as 'Cluster's Last Stand' - 8 Redstone tanks around a Jupiter tank core,powered by eight Jupiter engines. Originally intended as the launch vehicle for Apollo manned circumlunar flights. However it was developed so early, no payloads were available for it. More...
  • Saturn C-1 American orbital launch vehicle. Original flight version with dummy upper stages, including dummy Saturn S-V/Centaur (never flown). More...
  • Saturn C-5 American orbital launch vehicle. Final configuration of Saturn C-5 at the time of selection of this configuration for the Apollo program in December 1961. The actual Saturn V would be derived from this, but with an increased-diameter third stage (6.61 m vs 5.59 m in C-5) and increased propellant load in S-II second stage. More...
  • Saturn C-3B American orbital launch vehicle. Final configurtion of the Saturn C-3 at the time of selection of the Saturn C-5 configuration for the Apollo program in December 1961. More...
  • Saturn C-4B American orbital launch vehicle. Final configurtion of the Saturn C-4 at the time of selection of the Saturn C-5 configuration for the Apollo program in December 1961. Only Saturn configuration with common bulkhead propellant tanks in first stage, resulting in shorter vehicle than less powerful Saturn C-3. More...
  • Saturn C-5N American nuclear orbital launch vehicle. Version of Saturn C-5 considered with small nuclear thermal stage in place of S-IVB oxygen/hydrogen stage. More...
  • Saturn C-3BN American nuclear orbital launch vehicle. Version of Saturn C-3 considered with small nuclear thermal stage in place of S-IVB oxygen/hydrogen stage. More...
  • Saturn I Blk2 American orbital launch vehicle. Second Block of Saturn I, with substantially redesigned first stage and large fins to accomodate Dynasoar payload. More...
  • Saturn C-8 American orbital launch vehicle. The largest member of the Saturn family ever contemplated. Designed for direct landing of Apollo command module on moon. Configuration used eight F-1 engines in the first stage, eight J-2 engines in the second stage, and one J-2 engine in the third stage. Distinguishable from Nova 8L in use of J-2 engines instead of M-1 engines in second stage. More...
  • Saturn V American orbital launch vehicle. America's booster for the Apollo manned lunar landing. The design was frozen before a landing mode was selected; the Saturn V could be used for either Earth-Orbit-Rendezvous or Lunar-Orbit-Rendezvous methods. The vehicle ended up with the same payload capability as the 'too large' Nova. The basic diameter was dictated by the ceiling height at the Michoud factory selected for first stage manufacture. More...
  • Saturn V 2 American orbital launch vehicle. Two stage version of Saturn V, consisting of 1 x Saturn S-IC + 1 x Saturn S-II, used to launch Skylab. More...
  • Saturn MLV-V-4(S) American orbital launch vehicle. MSFC study, 1965. Saturn V core, strengthened but not stretched, with 4 Titan UA1205 strap-on solid rocket boosters. More...
  • Saturn MLV-V-1 American orbital launch vehicle. MSFC study, 1965. Improved Saturn V configuration studied under contract NAS8-11359. Saturn IC stretched 240 inches with 5.6 million pounds propellant and 5 F-1A engines; S-II stretched 41 inches with 1.0 million pounds propellant and 5 J-2 engines; S-IVB strengthened but with standard 230,000 lbs propellant, 1 J-2 engine. More...
  • Saturn MLV-V-2 American orbital launch vehicle. MSFC study, 1965. Saturn IC stretched 240 inches with 5.6 million pounds propellant and 5 F-1A engines; S-II stretched 41 inches with 1.0 million pounds propellant and 5 J-2 engines; S-IVB stretched 198 inches with 350,000 lbs propellant, 1 HG-3 engine. More...
  • Saturn MLV-V-3 American orbital launch vehicle. MSFC study, 1965. Ultimate core for improved Saturn V configurations studied under contract NAS8-11359. Saturn IC stretched 240 inches with 5.6 million pounds propellant and 5 F-1A engines; S-II stretched 156 inches with 1.2 million pounds propellant and 5 HG-3 engines; S-IVB stretched 198 inches with 350,000 lbs propellant, 1 HG-3 engine. More...
  • Saturn INT-05 American orbital launch vehicle. NASA Study, 1965: Half length 260 inch solid motor with S-IVB upper stage. More...
  • Saturn INT-27 American orbital launch vehicle. UA study, 1965. Saturn variant using various combinations of 156 inch rocket motors as first and second stages, with S-IVB upper stage. More...
  • Saturn MLV-V-4(S)-A American orbital launch vehicle. MSFC study, 1965. 4 Titan UA1205 solid rocket boosters; Saturn IC stretched 337 inches with 6.0 million pounds propellant and 5 F-1 engines; S-II with 970,000 pounds propellant and 5 J-2 engines; S-IVB strengthened but with standard 230,000 lbs propellant, 1 J-2 engine. More...
  • Saturn INT-05A American orbital launch vehicle. UA Study, 1965: Full length 260 inch solid motor with S-IVB upper stage. More...
  • Saturn IB-A American orbital launch vehicle. Douglas Studies, 1965: S-IB with 225 k lbf H-1's; S-IVB stretched with 350,000 lbs propellants; Centaur third stage. More...
  • Saturn MLV-V-1A American orbital launch vehicle. MSFC study, 1965. Saturn IC stretched 240 inches with 5.6 million pounds propellant and 6 F-1 engines; S-II stretched 156 inches with 1.2 million pounds propellant and 7 J-2 engines; S-IVB stretched 198 inches with 350,000 lbs propellant, 1 J-2 engine. More...
  • Saturn IB-B American orbital launch vehicle. Douglas Studies, 1965: S-IB with 225 k lbf H-1's; S-IVB stretched with 350,000 lbs propellants and HG-3 high performance engine. More...
  • Saturn IB-C American orbital launch vehicle. Douglas Studies, 1965: 4 Minuteman strap-ons; standard S-IB, S-IVB stages. More...
  • Saturn IB-CE American orbital launch vehicle. Douglas Studies, 1965: Standard Saturn IB with Centaur upper stage. More...
  • Saturn IB-D American orbital launch vehicle. Douglas Studies, 1965: Standard Saturn IB with Titan UA1205 5-segment strap-on motors. More...
  • Saturn MLV-V-1/J-2T/200K American orbital launch vehicle. MSFC study, 1965. Improved Saturn V configuration studied under contract NAS8-11359. Variant of MLV-V-1 with toroidal J-2T-200K engines replacing standard J-2 engines in upper stages. More...
  • Saturn MLV-V-1/J-2T/250K American orbital launch vehicle. MSFC study, 1965. Improved Saturn V configuration studied under contract NAS8-11359. Variant of MLV-V-1 with toroidal J-2T-250K engines replacing standard J-2 engines in upper stages. More...
  • Saturn IB American orbital launch vehicle. Improved Saturn I, with uprated first stage and Saturn IVB second stage (common with Saturn V) replacing Saturn IV. Used for earth orbit flight tests of Apollo CSM and LM. More...
  • Uprated Saturn I American orbital launch vehicle. Initial version of Saturn IB with old-design Saturn IB first stage. More...
  • Sparta American orbital launch vehicle. Three stage vehicle consisting of 1 x Redstone + 1 x Antares 2 + 1 x BE-3 More...
  • Saturn INT-11 American orbital launch vehicle. Chrysler Studies, 1966: S-IB with 4 Titan UA1205 with standard S-IB stage, S-IVB stage, or 4 Titan UA1207 strap-ons with 20-foot stretche S-IB stage, S-IVB stage. S-IB ignition at altitude. More...
  • Saturn INT-12 American orbital launch vehicle. Chrysler Studies, 1966: S-IB with only 4 H-1 motors, with 4 Titan UA1205 with standard length S-IB stage, S-IVB stage, or 4 Titan UA1207 strap-ons with 20-foot stretche S-IB stage, S-IVB stage. S-IB ignition at sea level at same time as strap-ons. More...
  • Saturn INT-13 American orbital launch vehicle. Chrysler Studies, 1966: S-IB with 2 Titan UA1205 with standard length S-IB stage, S-IVB stage, or 2 Titan UA1207 strap-ons with 20-foot stretche S-IB stage, S-IVB stage. S-IB ignition at sea level at same time as strap-ons. More...
  • Saturn INT-14 American orbital launch vehicle. Chrysler Studies, 1966: S-IB with 4 Minuteman motors as strap-ons, with no, 10, or 20-foot stretch S-IB stages, S-IVB stage. S-IB ignition at sea level at same time as strap-ons. More...
  • Saturn INT-15 American orbital launch vehicle. Chrysler Studies, 1966: S-IB with 8 Minuteman motors as strap-ons, with no, 10, or 20-foot stretch S-IB stages, S-IVB stage. S-IB ignition at sea level at same time as strap-ons. More...
  • Saturn INT-16 American orbital launch vehicle. UA Studies, 1966: S-IVB upper stage with from 2 to 5 Titan UA1205, 1206, or 1207 motors as first stage, clustered around from 1 to 3 of the same motors as a second stage. S-IVB upper stage. More...
  • Saturn INT-17 North American study, 1966. Saturn variant with a modified S-II first stage with seven high-performance HG-3 engines; S-IVB second stage. Poor performance and cost-effectiveness and not studied further. More...
  • Saturn INT-18 North American study, 1966. Saturn variant with Titan UA1205 or 1207 motors as boosters, Saturn II stage as core, and Saturn IVB upper stage. Various combinations of numbers of strap-ons, propellant loading of the two core stages, and sea-level versus altitude ignition were studied. More...
  • Saturn INT-19 North American study, 1966. Saturn variant with 4 to 12 Minuteman motors as boosters, Saturn II stage as core, and Saturn IVB upper stage. Saturn II stage would be fitted with lower expansion ratio engines and would ignite at sea level. Various combinations of numbers of strap-ons, propellant loading of the two core stages were studied. More...
  • Saturn V-ELV American orbital launch vehicle. NASA study, 1966. No-height-limitation stretched Saturn with Titan UA1207 motors for thrust augmentation. More...
  • Saturn V-23(L) American orbital launch vehicle. Boeing study, 1967. 4 260 inch liquid propellant boosters (each with 2 F-1's!).; Saturn IC stretched 240 inches with 5.6 million pounds propellant and 5 F-1 engines; S-II strengthened but with standard 930,000 pounds propellant and 5 J-2 engines; S-IVB stretched 198 inches with 350,000 lbs propellant, 1 J-2 engine. More...
  • Saturn V-24(L) American orbital launch vehicle. Boeing study, 1967. 4 260 inch liquid propellant boosters (each with 2 F-1A).; Saturn IC stretched 336 inches with 6.0 million pounds propellant and 5 F-1A engines; S-II stretched 156 inches with 1.2 million pounds propellant and 5 HG-3 engines; S-IVB stretched 198 inches with 350,000 lbs propellant, 1 HG-3 engine. Not studied in detail since vehicle height of 600 feet with payload exceeded study limit of 410 feet. More...
  • Saturn INT-20 American orbital launch vehicle. Saturn variant consisting of S-IC first stage and S-IVB second stage. Consideration was given to deleting one or more of the F-1 engines in the first stage. More...
  • Saturn LCB-Storable-250 American orbital launch vehicle. Boeing Low-Cost Saturn Derivative Study, 1967 (trade study of 260 inch first stages for S-IVB, all delivering 86,000 lb pyld to LEO): Low Cost Booster, Single Pressure-fed N2O4/UDMH Propellant engine, Ni-250 Steel Hull. More...
  • Saturn LCB-Storable-140 American orbital launch vehicle. Boeing Low-Cost Saturn Derivative Study, 1967 (trade study of 260 inch first stages for S-IVB, all delivering 86,000 lb pyld to LEO): Low Cost Booster, Single Pressure-fed N2O4/UDMH Propellant engine, HY-140 Steel Hull. More...
  • Saturn V/4-260 American orbital launch vehicle. Boeing study, 1967-1968. Use of full length 260 inch solid rocket boosters with stretched Saturn IC stages presented problems, since the top of the motors came about half way up the liquid oxygen tank of the stage, making transmission of loads from the motors to the core vehicle complex and adding a great deal of weight to the S-IC. Boeing's solution was to retain the standard length Saturn IC, with the 260 inch motors ending half way up the S-IC/S-II interstage, but to provide additional propellant for the S-IC by putting propellant tanks above the 260 inch boosters. These would be drained first and jettisoned with the boosters. This added to the plumbing complexity but solved the loads problem. More...
  • Saturn LCB-Alumizine-140 American orbital launch vehicle. Boeing Low-Cost Saturn Derivative Study, 1967 (trade study of 260 inch first stages for S-IVB, all delivering 86,000 lb pyld to LEO): Low Cost Booster, Single Pressure-fed N2O4/Alumizine Propellant engine, HY-140 Steel Hull. More...
  • Saturn LCB-Alumizine-250 American orbital launch vehicle. Boeing Low-Cost Saturn Derivative Study, 1967 (trade study of 260 inch first stages for S-IVB, all delivering 86,000 lb pyld to LEO): Low Cost Booster, Single Pressure-fed N2O4/Alumizine Propellant engine, Ni-250 Steel Hull. More...
  • Saturn INT-21 American orbital launch vehicle. Saturn variant consisting of S-IC first stage and S-II second stage. This essentially flew once to launch Skylab in 1972, although the IU was located atop the Skylab space station (converted S-IVB stage) rather than atop the S-II as in the INT-21 design. More...
  • Saturn LCB-Lox/RP-1 American orbital launch vehicle. Boeing Low-Cost Saturn Derivative Study, 1967 (trade study of 260 inch first stages for S-IVB, all delivering 86,000 lb pyld to LEO): Low Cost Booster, Single Pressure-fed Lox/RFP-1 engine. More...
  • Saturn V-25(S)B American orbital launch vehicle. Boeing study, 1967. 4 156 inch solid propellant boosters; Saturn IC stretched 498 inches with 6.64 million pounds propellant and 5 F-1 engines; S-II standard length with 5 J-2 engines; S-IVB stretched 198 inches with 350,000 lbs propellant, 1 J-2 engine. More...
  • Saturn MLV-V-4(S)-B American orbital launch vehicle. Boeing study, 1967. Configuration of improved Saturn 5 with Titan UA1207 120 inch solid rocket boosters. Saturn IC stretched 336 inches with 6.0 million pounds propellant and 5 F-1 engines; Saturn II and Saturn IVB stages strengthened but not stretched. Empty mass of stages increased by 13.9% (S-IC), 8.6% (S-II) and 11.8% (S-IVB). Studied again by Boeing in 1967 as Saturn V-4(S)B. More...
  • Saturn S-IC-TLB American orbital launch vehicle. Boeing Low-Cost Saturn Derivative Study, 1967 (trade study of 260 inch first stages for S-IVB, all delivering 86,000 lb pyld to LEO): S-IC Technology Liquid Booster: 260 inch liquid booster with 2 x F-1 engines, recoverable/reusable More...
  • Saturn V-3B American orbital launch vehicle. Boeing study, 1967. Variation on MSFC 1965 study Saturn MLV-V-3 but with toroidal engines. Saturn IC stretched 240 inches with 5.6 million pounds propellant (but only 4.99 million pounds usable without solid rocket boosters) and 5 F-1A engines; S-II stretched 186 inches with 1.29 million lbs propellant and 5 J-2T-400 engines; S-IVB stretched 198 inches with 350,000 lbs propellant, 1 J-2T-400 engine. More...
  • Saturn LCB-SR American orbital launch vehicle. Boeing Low-Cost Saturn Derivative Study, 1967 (trade study of 260 inch first stages for S-IVB, all delivering 86,000 lb pyld to LEO): Low Cost Booster, 260 inch solid motor, full length. More...
  • Saturn V-4X(U) American orbital launch vehicle. Boeing study, 1968. Four core vehicles from Saturn V-25(S) study lashed together to obtain million-pound payload using existing hardware. First stage consisted of 4 Saturn IC's stretched 498 inches with 6.64 million pounds propellant and 5 F-1 engines; second stage 4 Saturn II standard length stages with 5 J-2 engines More...
  • Saturn V-A American orbital launch vehicle. MSFC study, 1968. Essentially identical to Saturn INT-20; standard Saturn IC stage together with Saturn IVB second stage, with Centaur third stage for deep space missions. More...
  • Saturn V-B American orbital launch vehicle. MSFC study, 1968. Intriguing stage-and-a-half to orbit design using Saturn S-ID stage. The S-ID would be the same length and engines as the standard Saturn IC, but the four outer engines and their boost structure would be jettisoned once 70% of the propellant was consumed, as in the Atlas ICBM. This booster engine assembly would be recovered and reused. The center engine would be gimbaled and serve as a sustainer engine to put the rest of the vehicle and its 50,000 pound payload into orbit. At very minimal cost (36 months leadtime and $ 150 million) the United States could have attained a payload capability and level of reusability similar to that of the space shuttle. More...
  • Saturn V-C American orbital launch vehicle. MSFC study, 1968. S-ID stage-and-a-half first stage and Saturn IVB second stage. Centaur available as third stage for deep space missions. 30% performance improvement over Saturn V-A/Saturn INT-20 with standard Saturn IC first stage. More...
  • Saturn V-D American orbital launch vehicle. MSFC study, 1968. Rehashed the Boeing 1967 studies, covering a variety of stage stretches and 120, 156, or 260 inch solid rocket boosters, but with S-ID stage-and-a-half first stage. More...
  • Saturn V-Centaur American orbital launch vehicle. MSFC study, 1968. S-ID stage-and-a-half first stage and Saturn IVB second stage. Centaur available as third stage for deep space missions. 30% performance improvement over Saturn V-A/Saturn INT-20 with standard Saturn IC first stage. More...
  • Saturn V-25(S)U American orbital launch vehicle. Boeing study, 1968. 4 156 inch solid propellant boosters; Saturn IC stretched 498 inches with 6.64 million pounds propellant and 5 F-1 engines; S-II standard length with 5 J-2 engines. This vehicle would place Nerva nuclear third stage into low earth orbit, where five such stages would be assembled together with the spacecraft for a manned Mars expedition. More...
  • ATV American SSTO VTOVL orbital launch vehicle. George Detko of NASA's Marshall Space Flight Center produced designs for SSTO vehicles as early as 1960. The expendable vehicle had a gross listoff mass of only 22 tonnes, and could deliver a two-person crew to orbit. More...

Home - Browse - Contact
© / Conditions for Use