Encyclopedia Astronautica
N1 1962 - A


Lox/Kerosene propellant rocket stage. Loaded/empty mass 1,384,000/117,000 kg. Thrust 39,420.00 kN. Vacuum specific impulse 331 seconds. Earlier design for the Block A. Includes 14,000 kg for Stage 1-2 interstage and payload fairing. Compared to total fuelled mass excludes 15,000 kg propellant expended in thrust build-up and boil-off prior to liftoff. Values as in draft project as defended on 2-16 July 1962.

No Engines: 24.

Status: Study 1963.
Gross mass: 1,384,000 kg (3,051,000 lb).
Unfuelled mass: 117,000 kg (257,000 lb).
Height: 30.00 m (98.00 ft).
Diameter: 10.00 m (32.00 ft).
Span: 17.00 m (55.00 ft).
Thrust: 39,420.00 kN (8,861,960 lbf).
Specific impulse: 331 s.
Specific impulse sea level: 296 s.
Burn time: 103 s.
Number: 2 .

More... - Chronology...


Associated Countries
Associated Engines
  • NK-15 Kuznetsov Lox/Kerosene rocket engine. 1544 kN. N-1 stage 1 (block A). Development ended 1964. On the basis of NK-9 the NK-15 was developed for the N-1 launcher. 30 were used on the Block A (Stage 1) of the N-1. Isp=318s. First flight 1969. More...

Associated Launch Vehicles
  • N1 Nuclear A Russian nuclear orbital launch vehicle. A version of the N1 with a nuclear upper stage was studied by Korolev in 1963. It was concluded that the optimum design would allow a single N1 to launch a direct manned lunar landing and return. However for manned Mars missions, a nuclear electric engine was found to be much more efficient. This essentially killed further consideration of thermal nuclear upper stages within the bureau. More...
  • N1 Nuclear V-B Russian nuclear orbital launch vehicle. N1 with nuclear upper stage. This variant of the Type V nuclear engine used a very heavy radiation shield to protect the crew of any manned spacecraft payload. More...
  • N1 Nuclear AF Russian nuclear orbital launch vehicle. A variant of the first alternative considered in the 1963 nuclear N1 study. This was a 'high thrust' version of the Type A engine - apparently with higher propellant rate, lower specific impulse, and lower engine weight. Due to the very low density of the enormous liquid hydrogen upper stages, these immense vehicles would have been very ungainly (and had interesting stress problems during ascent!) More...
  • N1 Nuclear V Russian nuclear orbital launch vehicle. Second primary alternative considered for the 1963 nuclear N1 study. The immense liquid hydrogen tank of the second nuclear stage would have dwarfed the N1 first stage mounted below it in the shadows. The extremely poor thrust to weight ratio of the Type V engine design compared to that of the Type A remains unexplained. More...
  • N1 1962 Russian heavy-lift orbital launch vehicle. Final configuration of the N1 at the time of development go-ahead in 1962. The 75 tonne payload was to consist of the Raskat dispenser, which would have delivered 17 multi-megaton nuclear warheads, essentially destroying the United States in a single launch. The design also supported the OS-1 heavy space station and TMK manned Mars flyby requirements - as opposed to any manned lunar landing project. More...

Associated Propellants
  • Lox/Kerosene Liquid oxygen was the earliest, cheapest, safest, and eventually the preferred oxidiser for large space launchers. Its main drawback is that it is moderately cryogenic, and therefore not suitable for military uses where storage of the fuelled missile and quick launch are required. In January 1953 Rocketdyne commenced the REAP program to develop a number of improvements to the engines being developed for the Navaho and Atlas missiles. Among these was development of a special grade of kerosene suitable for rocket engines. Prior to that any number of rocket propellants derived from petroleum had been used. Goddard had begun with gasoline, and there were experimental engines powered by kerosene, diesel oil, paint thinner, or jet fuel kerosene JP-4 or JP-5. The wide variance in physical properties among fuels of the same class led to the identification of narrow-range petroleum fractions, embodied in 1954 in the standard US kerosene rocket fuel RP-1, covered by Military Specification MIL-R-25576. In Russia, similar specifications were developed for kerosene under the specifications T-1 and RG-1. The Russians also developed a compound of unknown formulation in the 1980's known as 'Sintin', or synthetic kerosene. More...

Home - Browse - Contact
© / Conditions for Use