Encyclopedia Astronautica

Nuclear/LH2 propellant rocket stage. Loaded/empty mass 178,321/34,019 kg. Thrust 867.41 kN. Vacuum specific impulse 825 seconds.

Cost $ : 226.200 million.

AKA: Nerva; Rover; Pluto.
Status: Development 1971.
Gross mass: 178,321 kg (393,130 lb).
Unfuelled mass: 34,019 kg (74,999 lb).
Height: 43.69 m (143.33 ft).
Diameter: 10.55 m (34.61 ft).
Span: 10.55 m (34.61 ft).
Thrust: 867.41 kN (195,001 lbf).
Specific impulse: 825 s.
Specific impulse sea level: 380 s.
Burn time: 1,200 s.

More... - Chronology...

Associated Countries
Associated Engines
  • Nerva 2 DoE nuclear/lh2 rocket engine. 867.4 kN. Developed 1950-74. Isp=825s. More...

Associated Propellants
  • Nuclear/LH2 Nuclear thermal engines use the heat of a nuclear reactor to heat a propellant. Although early Russian designs used ammonia or alcohol as propellant, the ideal working fluid for space applications is the liquid form of the lightest element, hydrogen. Nuclear engines would have twice the performance of conventional chemical rocket engines. Although successfully ground-tested in both Russia and America, they have never been flown due primarily to environmental and safety concerns. Liquid hydrogen was identified by all the leading rocket visionaries as the theoretically ideal rocket fuel. It had big drawbacks, however - it was highly cryogenic, and it had a very low density, making for large tanks. The United States mastered hydrogen technology for the highly classified Lockheed CL-400 Suntan reconnaissance aircraft in the mid-1950's. The technology was transferred to the Centaur rocket stage program, and by the mid-1960's the United States was flying the Centaur and Saturn upper stages using the fuel. It was adopted for the core of the space shuttle, and Centaur stages still fly today. More...

Home - Browse - Contact
© / Conditions for Use